浏览全部资源
扫码关注微信
天津科技大学食品科学与工程学院,天津 300457
*耿伟涛,E-mail:gengwt@tust.edu.cn
纸质出版日期:2024-10-20,
网络出版日期:2024-08-08,
收稿日期:2024-04-16,
录用日期:2024-07-08
移动端阅览
张艺华, 刘闪闪, 李妍, 李怀印, 马鑫毅, 耿伟涛. 胞外多糖/9-芴甲氧羰基-苯丙氨酸复合水凝胶药物缓释体系构建. 高分子通报, 2024, 37(10), 1438–1447
Zhang, Y. H.; Liu, S. S.; Li, Y.; Li, H. Y.; Ma, X. Y.; Geng, W. T. Development of a exopolysaccharides/9-fluorenylmethyloxycarbonyl-phenylalanine hydrogel system for drug delivery. Polym. Bull. (in Chinese), 2024, 37(10), 1438–1447
张艺华, 刘闪闪, 李妍, 李怀印, 马鑫毅, 耿伟涛. 胞外多糖/9-芴甲氧羰基-苯丙氨酸复合水凝胶药物缓释体系构建. 高分子通报, 2024, 37(10), 1438–1447 DOI: 10.14028/j.cnki.1003-3726.2024.24.117.
Zhang, Y. H.; Liu, S. S.; Li, Y.; Li, H. Y.; Ma, X. Y.; Geng, W. T. Development of a exopolysaccharides/9-fluorenylmethyloxycarbonyl-phenylalanine hydrogel system for drug delivery. Polym. Bull. (in Chinese), 2024, 37(10), 1438–1447 DOI: 10.14028/j.cnki.1003-3726.2024.24.117.
报道了一种新型肽-多糖水凝胶作为潜在亲水药物载体,并研究了其物理特性和药物释放性能。利用9-芴基甲氧羰基-苯丙氨酸(Fmoc-F)在胞外多糖(EPS)溶液中完成分子自组装,制备了EPS含量分别为33%、50%和66%的三种Fmoc-F/EPS水凝胶,命名为EPS33、EPS50和EPS66。通过流变、扫描电镜和质构分析表征了EPS对水凝胶结构、形态和机械性能的影响;通过傅里叶变换红外光谱探究了水凝胶中的多糖和多肽的结合方式;通过溶血实验、自由基清除实验、罗丹明B的载药量和体外释放性能,确定了EPS对水凝胶的安全性、抗氧化能力和亲水药物的递送能力的影响。结果表明含不同比例EPS的Fmoc-F/EPS水凝胶均表现出凝胶弹性固体行为,且EPS的增加使水凝胶的网络孔径增大;EPS的-OH通过和Fmoc-F分子之间形成了氢键相互作用。与Fmoc-F相比,EPS66的硬度降低,为1.689 g;对罗丹明B的载药量增加了22.79%,达到259.8 mg/mL;24 h穿透猪皮肤的深度增加了20.15%,达到1 576.5 μm。因此,双歧杆菌EPS可以通过与Fmoc-F的氢键相互作用形成具有更大网络孔径的稳定水凝胶,并赋予水凝胶更强的亲水药物装载能力。通过调整EPS的比例可以制备载药量大、抗氧化和控释效果良好、生物安全性好的可用于皮肤亲水性药物递送应用潜力的新型肽-多糖水凝胶。
This study introduces a new peptide-polysaccharide hydrogel for drug carriers
exploring its physical properties and drug release capabilities. Three variations of hydrogel EPS33
EPS50 and EPS66 with exopolysaccharides (EPS) contents of 33%
50% and 66%
respectively
were created using different ratios of 9-fluorenylmethoxycarbonyl-phenylalanine (Fmoc-F) to EPS. The influence of EPS on the structural
morphological
and mechanical characteristics of hydrogels was assessed using rheological
scanning electron microscopy
and textural analyses. The interaction between EPS and Fmoc-F within the hydrogels was examined by Fourier Transform Infrared (FTIR) spectroscopy. Furthermore
the effects of EPS on the biocompatibility
antioxidant properties
and drug delivery capabilities of the hydrogels were evaluated
via
hemolysis
free radical scavenging
drug loading
and
in vitro
release profiling using rhodamine B. The findings indicated that the Fmoc-F/EPS hydrogels with varying ratios of EPS displayed characteristics of gel-elastic solid behavior
with an observed increase in the network pore size with higher EPS content. The ―OH groups of EPS were found to establish hydrogen-bonding interactions within and between Fmoc-F molecules. Compared to Fmoc-F
the hardness of EPS66 decreased to 1.689 g
and the loading capacity of rhodamine B increased by 22.79% to 259.8 mg
/mL. The penetration depth through pig skin increased by 20.15% within 24 h
reaching 1 576.5 μm. Therefore
it was demonstrated that Bifidobacterium EPS can create a stable hydrogel with a larger network pore size by engaging in hydrogen bonding interactions with Fmoc-F
resulting in an enhanced hydrophilic drug loading capacity. By manipulating the EPS ratio
novel peptide-polysaccharide hydrogels can be developed with superior drug-loading capacity
antioxidant properties
release capabilities
and biosafety
making them suitable for applications in skin hydrophilic drug delivery.
自组装肽-多糖水凝胶药物载体胞外多糖药物缓释
Self-assemblyPeptide-polysaccharide hydrogelsDrug carriersExopolysaccharidesSustained release of the drug
Zhang, Z. H.; Ai, S. F.; Yang, Z. M.; Li, X. Y.Peptide-based supramolecular hydrogels for local drug delivery. Adv. Drug Deliv. Rev., 2021, 174, 482–503.
Webber, M. J.; Pashuck, E. T.(Macro)molecular self-assembly for hydrogel drug delivery. Adv. Drug Deliv. Rev., 2021, 172, 275–295.
Shang, Q.; Su, Y.; Leslie, F.; Sun, M. J.; Wang, F. H.Advances in peptide-drug conjugate-based supramolecular hydrogel systems for local drug delivery. Med. Drug Discov., 2022, 14, 100125.
Shim, J.; Kang, J.; Yun, S. I.Chitosan-dipeptide hydrogels as potential anticancer drug delivery systems. Int. J. Biol. Macromol., 2021, 187, 399–408.
韩梦泽. Fmoc-F/食品胶基复合膜制备工艺研究及其应用. 长沙: 中南林业科技大学, 2023.
Xie, Y. Y.; Zhao, J.; Huang, R. L.; Qi, W.; Wang, Y. F.; Su, R. X.; He, Z. M.Calcium-ion-triggered co-assembly of peptide and polysaccharide into a hybrid hydrogel for drug delivery. Nanoscale Res. Lett., 2016, 11(1), 184.
Alberts, B.; Heald, R.; Johnson, A.; Morgan, D.; Raff, M.; Roberts, K.; Walter, P.Molecular biology of the cell: seventh international student edition with registration card. New York: WW Norton & Company. 2022.
谭有珍, 郑芳昊, 刘东文, 李怀国, 雷凯君. 凝胶材料及其在经皮给药系统中的应用与研究进展. 中国现代应用药学, 2024, 41(8), 1151–1158.
Russell, D. A.; Ross, R. P.; Fitzgerald, G. F.; Stanton, C.Metabolic activities and probiotic potential of bifidobacteria. Int. J. Food Microbiol., 2011, 149(1), 88–105.
Ling, X. H.; Zhang, M. K.; Zhou, H. Y.; Han, G. Z.Preparation of a novel alginate hydrogel microspheres covered by hollow silica for controlled-release application. Eur. Polym. J., 2024, 204, 112716.
Zhang, Q. L.; Ren, T.; Gan, J.; Sun, L. R.; Guan, C. X.; Zhang, Q.; Pan, S. H.; Chen, H.Synthesis and rheological characterization of a novel salecan hydrogel. Pharmaceutics, 2022, 14(7), 1492.
吴燕, 寇先勇, 王峣姿, 刘同, 刘馨月, 尤祥宇, 苏江涛. 天花粉粗多糖壳聚糖复合水凝胶促进小鼠皮肤伤口愈合. 化学试剂, 2023, 45(12), 26–32.
公晓, 魏然, 宋恒欢, 权静, 聂华丽, 朱利民. 壳聚糖/Fmoc-FF自组装水凝胶的制备及其流变性研究. 化工新型材料, 2014, 42(12), 116–119.
Xu, K. Q.; Wu, C. E.; Fan, G. J.; Kou, X. H.; Li, X. J.; Li, T. T.; Dou, J. F.; Zhou, Y. F.Rheological properties, gel properties and 3D printing performance of soy protein isolate gel inks added with different types of apricot polysaccharides. Int. J. Biol. Macromol., 2023, 242, 124624.
童泽鑫, 徐海星, 樊李红, 胡婉庆, 林鹏杰, 李靖, 王海波, 彭锴, 彭敏, 胡志海. 羧丁酰壳聚糖/氧化普鲁兰复合水凝胶的制备及其性能. 武汉大学学报(理学版), 2021, 67(4), 346–352.
陈甜甜, 王聪, 刘婉嫕, 栾云浩, 李宇航, 刘鹏涛, 刘忠. pH响应性纤维素纳米纤丝/海藻酸钠基水凝胶的制备及其释药性研究. 中国造纸学报, 2022, 37(1), 16–21.
Jung, H.; Kim, M. K.; Lee, J. Y.; Choi, S. W.; Kim, J.Adhesive hydrogel patch with enhanced strength and adhesiveness to skin for transdermal drug delivery. Adv. Funct. Mater., 2020, 30(42), 2004407.
李文化, 赵冰可, 王军泽, 陈敬华, 邱立朋. 没食子酸改性壳聚糖水凝胶抑制细菌生物被膜及胞外多糖作用的评价. 中国医药工业杂志, 2023, 54(4), 595–603.
Liu, Y. X.; Chan-Park, M. B.Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials, 2009, 30(2), 196–207.
Qi, X. L.; Yuan, Y.; Zhang, J. F.; Bulte, J. W. M.; Dong, W.Oral administration of salecan-based hydrogels for controlled insulin delivery. J. Agric. Food Chem., 2018, 66(40), 10479–10489.
Qi, X. L.; Wei, W.; Li, J. J.; Zuo, G. C.; Pan, X. H.; Su, T.; Zhang, J. F.; Dong, W.Salecan-based pH-sensitive hydrogels for insulin delivery. Mol. Pharmaceutics, 2017, 14(2), 431–440.
Jing, Y. S.; Zhang, Y. M.; Cheng, W. J.; Li, M. S.; Hu, B. B.; Zheng, Y. G.; Zhang, D. S.; Wu, L. F.The synthesis, characterization, and protein-release properties of hydrogels composed of chitosan-Zingiber offcinale polysaccharide. Foods, 2022, 11(18), 2747.
张海曼. 基于Fmoc-F、Fmoc-Y/食品胶的自组装杂化水凝胶的性质及初步应用研究. 长沙: 中南林业大学, 2022.
李岩峰, 王勇, 白桐宁, 董硕, 王康康, 孙昊鉴, 吴海歌, 姚子昂. 壳聚糖/k-卡拉胶寡糖温敏水凝胶的制备与表征. 高分子通报, 2024, 37(10), 1428–1437.
Jiang, S.; Shang, L. C.; Liang, H. S.; Li, B.; Li, J.Preparation of konjac glucomannan/xanthan gum/sodium alginate composite gel by freezing combining moisture regulation. Food Hydrocoll., 2022, 127, 107499.
Huang, R. L.; Qi, W.; Feng, L. B.; Su, R. X.; He, Z. M.Self-assembling peptide–polysaccharide hybrid hydrogel as a potential carrier for drug delivery. Soft Matter, 2011, 7(13), 6222–6230.
赵奇, 赵祥宇, 刘岩, 谢和兵, 张健翔, 汪六一, 张继稳, 伍丽. 基于壳聚糖/海藻酸钠-聚乙烯醇的双层复合水凝胶膜伤口敷料研究. 药物评价研究, 2023, 46(11), 2321–2329.
王晓楠. 不同双歧杆菌胞外多糖的差异分析及其生物活性研究. 洛阳: 河南科技大学, 2022.
Hu, X. Y.; Wang, Y. M.; Zhang, L. L.; Xu, M.Construction of self-assembled polyelectrolyte complex hydrogel based on oppositely charged polysaccharides for sustained delivery of green tea polyphenols. Food Chem., 2020, 306, 125632.
吴萍香. 负载铁皮石斛多糖水凝胶的构建及其性能研究. 芜湖: 安徽工程大学, 2023.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构