浏览全部资源
扫码关注微信
1.中国计量大学生命科学学院,杭州 310018
2.教育部消化系统肿瘤医药基础研究创新中心,杭州 310020
3.浙江大学医学院第二附属医院消化内科,杭州 310009
4.浙江大学长三角智慧绿洲创新中心,嘉兴 314102
*刘祥瑞,E-mail: xiangrui@zju.edu.cn;黄楚娟,E-mail: l231008@zju.edu.cn
*刘祥瑞,E-mail: xiangrui@zju.edu.cn;黄楚娟,E-mail: l231008@zju.edu.cn
纸质出版日期:2024-10-20,
网络出版日期:2024-07-08,
收稿日期:2024-04-24,
录用日期:2024-05-22
移动端阅览
陆广林, 金园庭, 刘祥瑞, 黄楚娟. 基于刺激响应型聚合物纳米载体的铂类药物递送系统. 高分子通报, 2024, 37(10), 1317–1336
Lu, G. L.; Jin, Y. T.; Liu, X. R.; Huang, C. J. Stimulus-responsive polymeric nanocarriers for platinum drug delivery. Polym. Bull. (in Chinese), 2024, 37(10), 1317–1336
陆广林, 金园庭, 刘祥瑞, 黄楚娟. 基于刺激响应型聚合物纳米载体的铂类药物递送系统. 高分子通报, 2024, 37(10), 1317–1336 DOI: 10.14028/j.cnki.1003-3726.2024.24.124.
Lu, G. L.; Jin, Y. T.; Liu, X. R.; Huang, C. J. Stimulus-responsive polymeric nanocarriers for platinum drug delivery. Polym. Bull. (in Chinese), 2024, 37(10), 1317–1336 DOI: 10.14028/j.cnki.1003-3726.2024.24.124.
铂类药物因其独特的作用机制,具有高效、抗癌范围广等优点,是临床上最为常见的化疗用药。但是,铂类药物所带来的毒副作用和频发的耐药性限制了其治疗效果。随着纳米技术的发展,利用纳米载体实现其靶向递送成为了近年来的研究热点。在不同纳米载体中,对刺激响应型聚合物纳米载体的开发成为现阶段构建铂类药物递送系统的趋势。一方面,基于聚合物的纳米递送系统,能够利用聚合物链段,提高药物负载量,实现铂类药物的联用。另一方面,也能够通过刺激响应,利用肿瘤微环境,实现铂类药物在肿瘤部位的精准递送与蓄积渗透。本文在介绍铂类药物的基础上,根据刺激响应的来源分类,综述了近年来不同刺激响应型聚合物纳米载体在高效递送铂类药物上的研究进展,重点分析了聚合物纳米载体的设计策略与控释机理,旨在为开发针对铂类药物临床适用的聚合物纳米递送系统提供思路和理论参考。
Platinum (Pt) drugs are the most common chemotherapeutic agents in the clinic due to their unique anticancer mechanism
which endows them with high efficiency and broad-spectrum resistance to tumors. However
the toxicity and side effects induced by Pt drugs
also
the drug resistance limits the therapeutic effects of Pt drugs. With the development of nanotechnology
the use of nanocarriers to realize the targeted delivery of Pt drugs has become a hot research topic in recent years. Among the various kinds of nanocarriers
the development of stimuli-responsive polymeric nanocarriers has become a trend in the construction of Pt drug delivery systems at this stage. On the one hand
polymer-based nano-delivery system is capable of taking advantage of polymer segments to enhance loading capacity and achieve the conjugation of different drugs. On the other hand
it is capable of utilizing the tumor microenvironment to achieve the precise delivery and accumulation and penetration of Pt drugs through stimulation response.According to the classification of stimuli-responsive sources
this review overviews the recent progress of different stimuli-responsive polymeric nanocarriers to deliver Pt drugs efficiently
following the introduction of platinum drugs. The design strategy and the controlled-release mechanism of polymeric nanocarriers are analyzed with emphasis. This review aims to provide the research and development (R&D) idea and theoretical support for a clinically applicable polymer-based nano-delivery system for Pt drugs.
铂类药物聚合物纳米递送系统刺激响应
Platinum drugsPolymerNano-delivery systemsStimulus response
Zhou, W. X.; Jia, Y. J.; Liu, Y. N.; Chen, Y.; Zhao, P. X.Tumor microenvironment-based stimuli-responsive nanoparticles for controlled release of drugs in cancer therapy. Pharmaceutics, 2022, 14(11), 2346.
Xia, C. F.; Dong, X. S.; Li, H.; Cao, M. M.; Sun, D. Q.; He, S. Y.; Yang, F.; Yan, X. X.; Zhang, S. L.; Li, N.; Chen, W. Q.Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin. Med. J., 2022, 135(5), 584–590.
Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F.Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209–249.
王宇静, 熊惠娟, 吴莎莎, 周学文, 王小波. 铂类抗癌药物的研究现状与进展. 湖北科技学院学报(医学版), 2020, 34(3), 270–273.
Liu, Y.; Dong, W.; Ma, Y. C.; Dou, J. X.; Jiang, W.; Wang, L.; Wang, Q.; Li, S. Y.; Wang, Y. C.; Li, M.Nanomedicines with high drug availability and drug sensitivity overcome hypoxia-associated drug resistance. Biomaterials, 2023, 294, 122023.
Yang, Y.; Xu, L. G.; Zhu, W. J.; Feng, L. Z.; Liu, J. J.; Chen, Q.; Dong, Z. L.; Zhao, J. Y.; Liu, Z.; Chen, M. W.One-pot synthesis of pH-responsive charge-switchable PEGylated nanoscale coordination polymers for improved cancer therapy. Biomaterials, 2018, 156, 121–133.
Gu, J. L.; Liu, J. P.; Li, Y. S.; Zhao, W. R.; Shi, J. L.One-pot synthesis of mesoporous silica nanocarriers with tunable particle sizes and pendent carboxylic groups for cisplatin delivery. Langmuir, 2013, 29(1), 403–410.
Li, M. Y.; Du, C. Y.; Guo, N.; Teng, Y. O.; Meng, X.; Sun, H.; Li, S. S.; Yu, P.; Galons, H.Composition design and medical application of liposomes. Eur. J. Med. Chem., 2019, 164, 640–653.
Kim, E. S.; Lu, C.; Khuri, F. R.; Tonda, M.; Glisson, B. S.; Liu, D. E.; Jung, M.; Hong, W. K.; Herbst, R. S.A phase II study of STEALTH cisplatin (SPI-77) in patients with advanced non-small cell lung cancer. Lung Cancer, 2001, 34(3), 427–432.
Binauld, S.; Scarano, W.; Stenzel, M. H.pH-triggered release of platinum drugs conjugated to micelles via an acid-cleavable linker. Macromolecules, 2012, 45(17), 6989–6999.
Pan, D. Y.; She, W. C.; Guo, C. H.; Luo, K.; Yi, Q. Y.; Gu, Z. W.PEGylated dendritic diaminocyclohexyl-platinum(II) conjugates as pH-responsive drug delivery vehicles with enhanced tumor accumulation and antitumor efficacy. Biomaterials, 2014, 35(38), 10080–10092.
Rahim, M. A.; Jan, N.; Khan, S.; Shah, H.; Madni, A.; Khan, A.; Jabar, A.; Khan, S.; Elhissi, A.; Hussain, Z.; Aziz, H. C.; Sohail, M.; Khan, M.; Thu, H. E.Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting. Cancers, 2021, 13(4), 670.
Oberoi, H. S.; Nukolova, N. V.; Kabanov, A. V.; Bronich, T. K.Nanocarriers for delivery of platinum anticancer drugs. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1667–1685.
Wang, T. S.; Wu, C.; Hu, Y. G.; Zhang, Y.; Ma, J. K.Stimuli-responsive nanocarrier delivery systems for Pt-based antitumor complexes: a review. RSC Adv., 2023, 13(24), 16488–16511.
Jia, R. X.; Teng, L. S.; Gao, L. Y.; Su, T.; Fu, L.; Qiu, Z. D.; Bi, Y.Advances in multiple stimuli-responsive drug-delivery systems for cancer therapy. Int. J. Nanomed., 2021, 16, 1525–1551.
胡倩倩, 王振辉, 牛超, 张文奎, 李忠月. 铂类抗肿瘤药物耐药机制研究进展. 药学进展, 2017, 41(10), 769–774.
Rosenberg, B.; Van Camp, L.; Grimley, E. B.; Thomson, A. J.The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum(IV) complexes. J. Biol. Chem., 1967, 242(6), 1347–1352.
王冬博, 聂晶, 武慧娜, 孙磊, 刘丽慧, 吴记勇. 铂类抗肿瘤药物耐药机制的研究进展和应对策略. 药学实践杂志, 2022, 40(4), 302–308.
李想. 金属离子螯合聚合物纳米颗粒/囊泡的构建及在药物递送中的应用. 杭州: 浙江大学, 2022.
Oun, R.; Moussa, Y. E.; Wheate, N. J.The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans., 2018, 47(19), 6645–6653.
李书颖. 新型多功能纳米药物体系的构建及抗肿瘤效应评价. 齐鲁工业大学, 2022.
广东省药学会. 铂类药物临床应用与不良反应管理专家共识. 今日药学, 2019, 29(9), 577–585.
苏霁清. 白蛋白结合型紫杉醇联合奥沙利铂和氟尿嘧啶治疗胃癌的临床疗效. 临床合理用药杂志, 2021, 14(24), 51–53.
Shan, L. N.; Bai, B. J.; Lv, Y. M.; Xie, B. B.; Huang, X. F.; Zhu, H. B.Lobaplatin suppresses proliferation and peritoneal metastasis of colorectal cancer in a preclinical model. Biomed. Pharmacother., 2018, 108, 486–491.
Busschaert, N.; Park, S. H.; Baek, K. H.; Choi, Y. P.; Park, J.; Howe, E. N. W.; Hiscock, J. R.; Karagiannidis, L. E.; Marques, I.; Félix, V.; Namkung, W.; Sessler, J. L.; Gale, P. A.; Shin, I.A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations. Nat. Chem., 2017, 9(7), 667–675.
Zhang, C. Y.; Xu, C.; Gao, X. Y.; Yao, Q. Q.Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics, 2022, 12(5), 2115–2132.
张建忠, 柯樱, 沈佳琳. 铂类抗肿瘤药物的研发进展及市场情况. 上海医药, 2013, 34(23), 52–59.
彭锡杨. 三苯基膦纳米铂的制备及其对人乳腺癌细胞活力的影响. 衡阳: 南华大学, 2022.
孔北华, 刘继红, 向阳, 张国楠, 陈刚, 尹如铁, 李秀琴, 姜洁, 沈源明, 刘红, 蒋芳, 邓婷, 李小平, 鹿欣, 谢幸, 马丁. 妇科肿瘤铂类药物临床应用指南. 协和医学杂志, 2021, 12(6), 881–901.
牛星燕, 张冬萍, 李飞霞, 彭芸花. 卵巢恶性肿瘤化疗研究进展. 国际妇产科学杂志, 2020, 47(2), 125–128.
郭卫莉, 相元翠, 张月丽, 程旭芳, 何勐. 白蛋白结合型紫杉醇联合卡铂治疗晚期复发性上皮卵巢癌的疗效及安全性分析. 实用癌症杂志, 2023, 38(5), 829–833.
张思培, 陈丽娟, 石珍亮, 李鑫, 崔壮. 白蛋白结合型紫杉醇联合铂类药物治疗肺鳞癌的疗效观察. 现代药物与临床, 2023, 38(5), 1170–1174.
Toloudi, M.; Apostolou, P.; Papasotiriou, I.Efficacy of 5-FU or oxaliplatin monotherapy over combination therapy in colorectal cancer. J. Cancer Ther., 2015, 6(4), 345–355.
Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R.Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751–760.
Pérez-Herrero, E.; Fernández-Medarde, A.Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52–79.
Boztepe, T.; Castro, G. R.; León, I. E.Lipid, polymeric, inorganic-based drug delivery applications for platinum-based anticancer drugs. Int. J. Pharm., 2021, 605, 120788.
Luo, S. C.; Lv, Z.; Yang, Q. Q.; Chang, R. J.; Wu, J. Z.Research progress on stimulus-responsive polymer nanocarriers for cancer treatment. Pharmaceutics, 2023, 15(7), 1928.
Xia, Y. F.; Duan, S.; Han, C. Z.; Jing, C. W.; Xiao, Z. Y.; Li, C.Hypoxia-responsive nanomaterials for tumor imaging and therapy. Front. Oncol., 2022, 12, 1089446.
Sharma, A.; Arambula, J. F.; Koo, S.; Kumar, R.; Singh, H.; Sessler, J. L.; Kim, J. S.Hypoxia-targeted drug delivery. Chem. Soc. Rev., 2019, 48(3), 771–813.
Mi, P.Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 2020, 10(10), 4557–4588.
Chen, G.; Zhang, Y. Z.; Deng, H. W.; Tang, Z. L.; Mao, J. J.; Wang, L.Pursuing for the better lung cancer therapy effect: comparison of two different kinds of hyaluronic acid and nitroimidazole co-decorated nanomedicines. Biomed. Pharmacother., 2020, 125, 109988.
Tanaka, T.; Saito, N.; Okubo, M.Control of layer thickness of onionlike multilayered composite polymer particles prepared by the solvent evaporation method. Macromolecules, 2009, 42(19), 7423–7429.
Ku, K. H.; Shin, J. M.; Klinger, D.; Jang, S. G.; Hayward, R. C.; Hawker, C. J.; Kim, B. J.Particles with tunable porosity and morphology by controlling interfacial instability in block copolymer emulsions. ACS Nano, 2016, 10(5), 5243–5251.
王诚淏, 王鹤樵, 马梦超, 任金妹, 唐景玲. 刺激响应型纳米载体用于克服肿瘤多药耐药的研究进展. 中国药师, 2021, 24(9), 1712–1716.
Liu, J.; Huang, Y. R.; Kumar, A.; Tan, A.; Jin, S. B.; Mozhi, A. B.; Liang, X. J.pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv., 2014, 32(4), 693–710.
Wlodarczyk, M. T.; Dragulska, S. A.; Chen, Y.; Poursharifi, M.; Acosta Santiago, M.; Martignetti, J. A.; Mieszawska, A. J.Pt(II)-PLGA hybrid in a pH-responsive nanoparticle system targeting ovarian cancer. Pharmaceutics, 2023, 15(2), 607.
赵耀, 杨璨羽, 张强, 王学清. 肿瘤氧化还原微环境响应型小分子前药纳米粒的代谢与药效研究进展. 药学学报, 2021, 56(2), 476–486.
Das, S. S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G. Z.Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers, 2020, 12(6), 1397.
Xu, W. H.; Liu, W. R.; Yang, J. F.; Lu, J. H.; Zhang, H. L.; Ye, D. W.Stimuli-responsive nanodelivery systems for amplifying immunogenic cell death in cancer immunotherapy. Immunol. Rev., 2024, 321(1), 181–198.
Xu, X. D.; Saw, P. E.; Tao, W.; Li, Y. J.; Ji, X. Y.; Bhasin, S.; Liu, Y. L.; Ayyash, D.; Rasmussen, J.; Huo, M.; Shi, J. J.; Farokhzad, O. C.ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy. Adv. Mater., 2017, 29(33), 1700141.
郭望葳, 韩旻. ROS响应性纳米给药系统的研究进展. 中国现代应用药学, 2017, 34(5), 766–770.
Hucke, A.; Park, G. Y.; Bauer, O. B.; Beyer, G.; Köppen, C.; Zeeh, D.; Wehe, C. A.; Sperling, M.; Schröter, R.; Kantauskaitè, M.; Hagos, Y.; Karst, U.; Lippard, S. J.; Ciarimboli, G.Interaction of the new monofunctional anticancer agent phenanthriplatin with transporters for organic cations. Front. Chem., 2018, 6, 180.
Dabbish, E.; Russo, N.; Sicilia, E.Rationalization of the superior anticancer activity of phenanthriplatin: an In-depth computational exploration. Chem. Eur. J., 2020, 26(1), 259–268.
Wang, Y. H.; Jiang, Y. H.; Wei, D. S.; Singh, P.; Yu, Y. J.; Lee, T.; Zhang, L. P.; Mandl, H. K.; Piotrowski-Daspit, A. S.; Chen, X. Y.; Li, F.; Li, X.; Cheng, Y. Y.; Josowitz, A.; Yang, F.; Zhao, Y.; Wang, F. Y.; Zhao, Z. W.; Huttner, A.; Bindra, R. S.; Xiao, H. H.; Saltzman, W. M.Nanoparticle-mediated convection-enhanced delivery of a DNA intercalator to gliomas circumvents temozolomide resistance. Nat. Biomed. Eng., 2021, 5(9), 1048–1058.
Agarwal, R.; Kaye, S. B.Ovarian cancer: Strategies for overcoming resistance to chemotherapy. Nat. Rev. Cancer, 2003, 3(7), 502–516.
Chen, H.; Wang, Y. S.; Liu, Y. L.; Tang, L.; Mu, Q. C.; Yin, X. Y.; Zheng, L. C.; Chen, Y. B.; Liu, C. Y.Delivery of cationic platinum prodrugs via reduction sensitive polymer for improved chemotherapy. Small, 2021, 17(45), e2101804.
Zhang, L. P.; Shang, K.; Li, X. M.; Shen, M. F.; Lu, S.; Tang, D. S.; Han, H. B.; Yu, Y. J.Reduction sensitive polymers delivering cationic platinum drugs as STING agonists for enhanced chemo-immunotherapy. Adv. Funct. Mater., 2022, 32(43), 2204589.
Cao, L.; Tian, H. X.; Fang, M.; Xu, Z.; Tang, D. S.; Chen, J.; Yin, J. Y.; Xiao, H. H.; Shang, K.; Han, H. B.; Li, X. P.Activating cGAS-STING pathway with ROS-responsive nanoparticles delivering a hybrid prodrug for enhanced chemo-immunotherapy. Biomaterials, 2022, 290, 121856.
Cao, W.; Gu, Y. W.; Meineck, M.; Li, T. Y.; Xu, H. P.Tellurium-containing polymer micelles: competitive-ligand-regulated coordination responsive systems. J. Am. Chem. Soc., 2014, 136(13), 5132–5137.
Li, F.; Li, T. Y.; Cao, W.; Wang, L.; Xu, H. P.Near-infrared light stimuli-responsive synergistic therapy nanoplatforms based on the coordination of tellurium-containing block polymer and cisplatin for cancer treatment. Biomaterials, 2017, 133, 208–218.
Wei, D. S.; Yu, Y. J.; Zhang, X. C.; Wang, Y. H.; Chen, H.; Zhao, Y.; Wang, F. Y.; Rong, G. H.; Wang, W. W.; Kang, X.; Cai, J.; Wang, Z. H.; Yin, J. Y.; Hanif, M.; Sun, Y. B.; Zha, G. F.; Li, L. X.; Nie, G. H.; Xiao, H. H.Breaking the intracellular redox balance with diselenium nanoparticles for maximizing chemotherapy efficacy on patient-derived xenograft models. ACS Nano, 2020, 14(12), 16984–16996.
Molinier-Frenkel, V.; Prévost-Blondel, A.; Castellano, F.The IL4I1 enzyme: a new player in the immunosu-ppressive tumor microenvironment. Cells, 2019, 8(7), 757.
Qiu, N. S.; Gao, J. Q.; Liu, Q.; Wang, J. Q.; Shen, Y. Q.Enzyme-responsive charge-reversal polymer-mediated effective gene therapy for intraperitoneal tumors. Biomacromolecules, 2018, 19(6), 2308–2319.
Li, Y. Q.; Gao, J. B.; Zhang, C.; Cao, Z.; Cheng, D.; Liu, J.; Shuai, X. T.Stimuli-responsive polymeric nanocarriers for efficient gene delivery. Top. Curr. Chem., 2017, 375(2), 27.
Surnar, B.; Sharma, K.; Jayakannan, M.Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells. Nanoscale, 2015, 7(42), 17964–17979.
Zhou, F. Y.; Feng, B.; Yu, H. J.; Wang, D. G.; Wang, T. T.; Ma, Y. T.; Wang, S. L.; Li, Y. P.Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv. Mater., 2019, 31(14), e1805888.
Bian, T.; Chu, Z. L.; Klajn, R.The many ways to assemble nanoparticles using light. Adv. Mater., 2020, 32(20), e1905866.
Zhao, W.; Zhao, Y. M.; Wang, Q. F.; Liu, T. Q.; Sun, J. J.; Zhang, R.Remote light-responsive nanocarriers for controlled drug delivery: advances and perspectives. Small, 2019, 15(45), e1903060.
Zhou, D. F.; He, S. S.; Cong, Y. W.; Xie, Z. G.; Chen, X. S.; Jing, X. B.; Huang, Y. B.A polymer-(multifunctional single-drug) conjugate for combination therapy. J. Mater. Chem. B, 2015, 3(24), 4913–4921.
Zhang, Q. F.; Kuang, G. Z.; He, S. S.; Lu, H. T.; Cheng, Y. L.; Zhou, D. F.; Huang, Y. B.Photoactivatable prodrug-backboned polymeric nanoparticles for efficient light-controlled gene delivery and synergistic treatment of platinum-resistant ovarian cancer. Nano Lett., 2020, 20(5), 3039–3049.
Zhang, Q. F.; Kuang, G. Z.; Zhou, D. F.; Qi, Y. X.; Wang, M. Z.; Li, X. Y.; Huang, Y. B.Photoactivated polyprodrug nanoparticles for effective light-controlled Pt(iv) and siRNA codelivery to achieve synergistic cancer therapy. J. Mater. Chem. B, 2020, 8(27), 5903–5911.
Kuang, G. Z.; Lu, H. T.; He, S. S.; Xiong, H. J.; Yu, J.; Zhang, Q. F.; Huang, Y. B.Near-infrared light-triggered polyprodrug/siRNA loaded upconversion nanoparticles for multi-modality imaging and synergistic cancer therapy. Adv. Healthc. Mater., 2021, 10(20), e2100938.
Chen, G. Y.; Qiu, H. L.; Prasad, P. N.; Chen, X. Y.Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev., 2014, 114(10), 5161–5214.
Wei, D. S.; Huang, Y.; Wang, B.; Ma, L. L.; Karges, J.; Xiao, H. H.Photo-reduction with NIR light of nucleus-targeting PtIV nanoparticles for combined tumor-targeted chemotherapy and photodynamic immunotherapy. Angew. Chem. Int. Ed., 2022, 61(20), 2201486.
Dai, Z. W.; Wang, Z. G.Photoactivatable platinum-based anticancer drugs: mode of photoactivation and mechanism of action. Molecules, 2020, 25(21), 5167.
Shen, L. Z.; Li, B.; Qiao, Y. S.Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials, 2018, 11(2), 324.
Yang, Y. F.; Meng, F. Y.; Li, X. H.; Wu, N. N.; Deng, Y. H.; Wei, L. Y.; Zeng, X. P.Magnetic graphene oxide-Fe3O4-PANI nanoparticle adsorbed platinum drugs as drug delivery systems for cancer therapy. J. Nanosci. Nanotechnol., 2019, 19(12), 7517–7525.
Kralj, S.; Potrc, T.; Kocbek, P.; Marchesan, S.; Makovec, D.Design and fabrication of magnetically responsive nanocarriers for drug delivery. Curr. Med. Chem., 2017, 24(5), 454–469.
Song, H. Q.; Quan, F. F.; Yu, Z. Q.; Zheng, M. H.; Ma, Y.; Xiao, H. H.; Ding, F.Carboplatin prodrug conjugated Fe3O4 nanoparticles for magnetically targeted drug delivery in ovarian cancer cells. J. Mater. Chem. B, 2019, 7(3), 433–442.
Mandriota, G.; Di Corato, R.; Benedetti, M.; De Castro, F.; Fanizzi, F. P.; Rinaldi, R.Design and application of cisplatin-loaded magnetic nanoparticle clusters for smart chemotherapy. ACS Appl. Mater. Interfaces, 2019, 11(2), 1864–1875.
Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S. M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A. R.; Haghani, L.; Bahrami, S.; Hamblin, M. R.Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev., 2016, 45(5), 1457–1501.
Hu, Y. L.; Kim, Y.; Jeong, J. P.; Park, S.; Shin, Y.; Hong, I. K.; Kim, M. S.; Jung, S.Novel temperature/pH-responsive hydrogels based on succinoglycan/poly(N-isopropylacrylamide) with improved mechanical and swelling properties. Eur. Polym. J., 2022, 174, 111308.
吕菊波, 纪秀翠, 张亚会, 徐慧. 聚(N-异丙基丙烯酰胺)的制备及应用进展. 化学通报, 2018, 81(3), 195–202.
McDaniel, J. R.; Callahan, D. J.; Chilkoti, A.Drug delivery to solid tumors by elastin-like polypeptides. Adv. Drug Deliv. Rev., 2010, 62(15), 1456–1467.
Onugwu, A. L.; Attama, A. A.; Nnamani, P. O.; Onugwu, S. O.; Onuigbo, E. B.; Khutoryanskiy, V. V.Development and optimization of solid lipid nanoparticles coated with chitosan and poly(2-ethyl-2-oxazoline) for ocular drug delivery of ciprofloxacin. J. Drug Deliv. Sci. Technol., 2022, 74, 103527.
Shen, W. J.; Luan, J. B.; Cao, L. P.; Sun, J.; Yu, L.; Ding, J. D.Thermogelling polymer-platinum(IV) conjugates for long-term delivery of cisplatin. Biomacromolecules, 2015, 16(1), 105–115.
Yu, L.; Ding, J. D.Injectable hydrogels as unique biomedical materials. Chem. Soc. Rev., 2008, 37(8), 1473–1481.
Perera, K.; Nguyen, D. X.; Wang, D.; Kuriakose, A. E.; Yang, J.; Nguyen, K. T.; Menon, J. U.Biodegradable and inherently fluorescent pH-responsive nanoparticles for cancer drug delivery. Pharm. Res., 2022, 39(11), 2729–2743.
Yang, J.; Zhang, Y.; Gautam, S.; Liu, L.; Dey, J.; Chen, W.; Mason, R. P.; Serrano, C. A.; Schug, K. A.; Tang, L. P.Development of aliphatic biodegradable photoluminescent polymers. Proc. Natl. Acad. Sci. USA, 2009, 106(25), 10086–10091.
Entzian, K.; Aigner, A.Drug delivery by ultrasound-responsive nanocarriers for cancer treatment. Pharmaceutics, 2021, 13(8), 1135.
Qian, X. Q.; Zheng, Y. Y.; Chen, Y.Micro/nanoparticle-augmented sonodynamic therapy (SDT): breaking the depth shallow of photoactivation. Adv. Mater., 2016, 28(37), 8097–8129.
Zhang, Y. H.; Dong, Y.; Fu, H.; Huang, H.; Wu, Z. H.; Zhao, M.; Yang, X. P.; Guo, Q. Q.; Duan, Y. R.; Sun, Y.Multifunctional tumor-targeted PLGA nanoparticles delivering Pt(IV)/siBIRC5 for US/MRI imaging and overcoming ovarian cancer resistance. Biomaterials, 2021, 269, 120478.
Liang, G. H.; Sadhukhan, T.; Banerjee, S.; Tang, D. S.; Zhang, H. C.; Cui, M. H.; Montesdeoca, N.; Karges, J.; Xiao, H. H.Reduction of platinum(IV) prodrug hemoglobin nanoparticles with deeply penetrating ultrasound radiation for tumor-targeted therapeutically enhanced anticancer therapy. Angew. Chem. Int. Ed., 2023, 62(22), e202301074.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构