浏览全部资源
扫码关注微信
天津大学材料科学与工程学院,天津 300350
*马哲,E-mail: zhe.ma@tju.edu.cn
纸质出版日期:2024-10-20,
网络出版日期:2024-07-04,
收稿日期:2024-05-07,
录用日期:2024-06-06
移动端阅览
刘超, 马哲, 潘莉, 李悦生. 共聚丁烯弹性体增韧等规聚丙烯. 高分子通报, 2024, 37(10), 1448–1458
Liu, C.; Ma, Z.; Pan, L.; Li, Y. S. Isotactic polypropylene toughened by polybutene-based elastomers. Polym. Bull. (in Chinese), 2024, 37(10), 1448–1458
刘超, 马哲, 潘莉, 李悦生. 共聚丁烯弹性体增韧等规聚丙烯. 高分子通报, 2024, 37(10), 1448–1458 DOI: 10.14028/j.cnki.1003-3726.2024.24.138.
Liu, C.; Ma, Z.; Pan, L.; Li, Y. S. Isotactic polypropylene toughened by polybutene-based elastomers. Polym. Bull. (in Chinese), 2024, 37(10), 1448–1458 DOI: 10.14028/j.cnki.1003-3726.2024.24.138.
本文利用吡啶亚胺铪/Ph
3
CB(C
6
F
5
)
4
催化丁烯与十二烯(C12)、十六烯(C16)、二十烯(C20)无规共聚,合成了一系列侧链长度不同的聚丁烯弹性体(PBE),其最高断裂伸长率和最高弹性恢复率可分别达5 000%和88.9%。采用熔融共混法制备了等规聚丙烯(
i
PP)/PBE共混物,详细研究了PBE添加量、侧链长度和共聚单体插入率对
i
PP/PBE共混物韧性作用的影响。与纯
i
PP相比,加入5 wt%共聚单元为C16、插入率为52.3%的聚丁烯弹性体PBE-C16(52.3),可将材料断裂伸长率增加8倍、抗冲强度提高2倍。PBE高弹性恢复能力及其在
i
PP基体中较小的分散相尺寸有利于提高共混物的韧性。该工作为制备高韧性的聚丙烯合金提供了一种简便有效的方法。
A series of long-chain branching polybutene-based elastomers (PBEs) were successfully prepared by incorporating distinct comonomers of 1-dodecene (C12)
1-hexadecene (C16)
and 1-icosaene (C20). The improved elongation
at break of PBE could exceed 5 000%
and the best elastic recovery of PBE reached 88.9%. Moreover
PBEs were blended with isotactic polypropylene (
i
PP) to improve the material toughness. The effects of additional
side chain length
and comonomer incorporation of PBEs on the toughening effect were systematically studied. The results showed that for PBE-C16(52.3) incorporated 52.3 mol% 1-hexadecene comonomers
the addition of 5 wt% PBE increased the elongation at break of
i
PP blend by more than 8 times to 900% and its impact strength increased by 2 times to 15.3 kJ/m
2
. The high elastic recovery of PBE and its small dispersed phase size are beneficial to the improvement on toughness of the
i
PP blend material. This work provides a simple and effective method for obtaining
i
PP blend material with the improved toughness.
聚丁烯弹性体长链支化聚丙烯增韧
Polybutene elastomersLong-chain branchingPolypropylene toughening
Boussie, T. R.; Diamond, G. M.; Goh, C.; Hall, K. A.; LaPointe, A. M.; Leclerc, M. K.; Murphy, V.; Shoemaker, J. A. W.; Turner, H.; Rosen, R. K.; Stevens, J. C.; Alfano, F.; Busico, V.; Cipullo, R.; Talarico, G.Nonconventional catalysts for isotactic propene polymerization in solution developed by using high-throughput-screening technologies. Angew. Chem. Int. Ed., 2006, 45(20), 3278–3283.
Cheruthazhekatt, S.; Pijpers, T. F. J.; Harding, G. W.; Mathot, V. B. F.; Pasch, H.Compositional analysis of an impact polypropylene copolymer by fast scanning DSC and FTIR of TREF-SEC cross-fractions. Macromolecules, 2012, 45(15), 5866–5880.
Corradini, P.The discovery of isotactic polypropylene and its impact on pure and applied science. J. Polym. Sci. A Polym. Chem., 2004, 42(3), 391–395.
Danesi, S.; Porter, R. S.Blends of isotactic poly-propylene and ethylene-propylene rubbers: rheology, morphology and mechanics. Polymer, 1978, 19(4), 448–457.
López Manchado, M. A.; Biagiotti, J.; Kenny, J. M.Rheological behavior and processability of polypropylene blends with rubber ethylene propylene diene terpolymer. J. Appl. Polym. Sci., 2001, 81(1), 1–10.
闫海生, 杨卫兰, 高利平. 中国聚丙烯生产工艺技术及品种牌号分析. 现代化工, 2021, 41(5), 13–15.
刘国明, 王笃金. 聚丙烯/聚烯烃弹性体共混体系的结构-性能关联. 高分子通报, 2011, (10), 130–137.
王文强, 李名玉, 赵铁光. 高韧性高模量改性聚丙烯着色专用料的研究. 塑料科技, 2018, 46(6), 78–82.
吕仪, 高欢, 潘莉. 丙烯与1,3-丁二烯配位共聚合制备兼具高刚性与高韧性的嵌段共聚物. 高分子学报, 2022, 53(11), 1409–1420.
商睿凝, 高欢, 李玉莲, 王彬, 马哲, 潘莉, 李悦生. 咔唑功能化等规聚丙烯的合成及性能研究. 高分子学报, 2019, 50(11), 1187–1195.
Abreu, F. O. M. S.; Forte, M. M. C.; Liberman, S. A.SBS and SEBS block copolymers as impact modifiers for polypropylene compounds. J. Appl. Polym. Sci., 2005, 95(2), 254–263.
Shariatpanahi, H.; Nazokdast, H.; Hemmati, M.Relationship between interfacial tension and dispersed-phase particle size in polymer blends. II. PP/PA6. J. Appl. Polym. Sci., 2003, 88(1), 54–63.
赵莹, 刘国明, 周勇, 苏允兰, 董侠, 王笃金. 聚丙烯多层次结构调控: 成核作用与合金化研究进展. 高分子通报, 2021, (6), 35–47.
杜惠真, 杨飞, 张坤玉, 马哲, 王彬, 潘莉, 李悦生. 等规聚丙烯离聚体增容聚丙烯/尼龙11共混体系研究. 高分子学报, 2018, (12), 1539–1547.
van der Wal, A.; Gaymans, R. J.Polypropylene-rubber blends: 5. Deformation mechanism during fracture. Polymer, 1999, 40(22), 6067–6075.
Wei, G. X.; Sue, H. J.; Chu, J.; Huang, C.; Gong, K.Toughening and strengthening of polypropylene using the rigid-rigid polymer toughening concept part I. Morphology and mechanical property investigations. Polymer, 2000, 41(8), 2947–2960.
Thio, Y. S.; Argon, A. S.; Cohen, R. E.; Weinberg, M.Toughening of isotactic polypropylene with CaCO3 particles. Polymer, 2002, 43(13), 3661–3674.
Lin, Y.; Chen, H. B.; Chan, C. M.; Wu, J. S.The toughening mechanism of polypropylene/calcium carbonate nanocomposites. Polymer, 2010, 51(14), 3277–3284.
Yokoyama, Y.; Ricco, T.Toughening of polypropylene by different elastomeric systems. Polymer, 1998, 39(16), 3675–3681.
Xu, J.; Mittal, V.; Bates, F. S.Toughened isotactic polypropylene: phase behavior and mechanical properties of blends with strategically designed random copolymer modifiers. Macromolecules, 2016, 49(17), 6497–6506.
Eagan, J. M.; Xu, J.; Di Girolamo, R.; Thurber, C. M.; Macosko, C. W.; LaPointe, A. M.; Bates, F. S.; Coates, G. W.Combining polyethylene and polypropylene: enhanced performance with PE/iPP multiblock polymers. Science, 2017, 355(6327), 814–816.
Ou, Y. C.; Guo, T. T.; Fang, X. P.; Yu, Z. Z.Toughening and reinforcing polypropylene with core-shell structured fillers. J. Appl. Polym. Sci., 1999, 74(10), 2397–2403.
Uotila, R.; Hippi, U.; Paavola, S.; Seppälä, J.Compatibilization of PP/elastomer/microsilica composites with functionalized polyolefins: effect on microstructure and mechanical properties. Polymer, 2005, 46(19), 7923–7930.
Shangguan, Y. G.; Chen, F.; Yang, J.; Jia, E. W.; Zheng, Q.A new approach to fabricate polypropylene alloy with excellent low-temperature toughness and balanced toughness-rigidity through unmatched thermal expansion coefficients between components. Polymer, 2017, 112, 318–324.
Chen, F.; Qiu, B. W.; Wang, B.; Shangguan, Y. G.; Zheng, Q.Balanced toughening and strengthening of ethylene-propylene rubber toughened isotactic polypropylene using a poly(styrene-b-ethylene-propylene) diblock copolymer. RSC Adv., 2015, 5(27), 20831–20837.
Banerjee, J.; Soliya, P.; Pallavi, M. B.; Mukhopadhyay, P.; Bandyopadhyay, S.; Chakrabarty, D.; Dutta, K.Impact modification of isotactic polypropylene with ethylene-propylene diene monomer rubber. Int. Polym. Process., 2016, 31(2), 188–197.
Saujanya, C.; Sainkar, S.; Radhakrishnan, S.Structure and properties of PP/SBS/glass fiber hybrid composites. Part I: crystallization behavior and morphology. Polym. Compos., 2001, 22(2), 221–231.
姜柏羽, 刘振学, 贺爱华. 聚烯烃合金的研究进展(Ⅱ): 分级方法、结构调控与性能. 高分子通报, 2016, (1), 9–16.
Wang, F. F.; Du, H. N.; Liu, H.; Zhang, Y.; Zhang, X. W.; Zhang, J.The synergistic effects of β-nucleating agent and ethylene-octene copolymer on toughening isotactic polypropylene. Polym. Test., 2015, 45, 1–11.
Fasihi, M.; Mansouri, H.Effect of rubber interparticle distance distribution on toughening behavior of thermoplastic polyolefin elastomer toughened poly-propylene. J. Appl. Polym. Sci., 2016, 133(40), 44068.
Ren, Q. L.; Fan, J. S.; Zhang, Q. L.; Yi, J. J.; Feng, J. C.Toughened polypropylene random copolymer with olefin block copolymer. Mater. Des., 2016, 107, 295–301.
Schmidt, P.; Baldrian, J.; Ščudla, J.; Dybal, J.; Raab, M.; Eichhorn, K. J.Structural transformation of polyethylene phase in oriented polyethylene/polypropylene blends: a hierarchical structure approach. Polymer, 2001, 42(12), 5321–5326.
Walter, P.; Mäder, D.; Mülhaupt, R.Influence of copolymer composition and curing on toughness of isotactic polypropene blended together with metallocene-EPDM and ethene/propene/vinylcyclohexane terpoly-mers. Macromol. Mater. Eng., 2001, 286(7), 388–397.
Wang, X.; Hu, S.; Guo, Y.; Li, G. Q.; Xu, R. W.Toughened high-flow polypropylene with polyolefin-based elastomers. Polymers, 2019, 11(12), 1976.
Qi, L. C.; Wu, L.; He, R.; Cheng, H.; Liu, B. P.; He, X. L.Synergistic toughening of polypropylene with ultra-high molecular weight polyethylene and elastomer-olefin block copolymers. RSC Adv., 2019, 9(41), 23994–24002.
Karger-Kocsis, J.; Kalló, A.; Kuleznev, V. N.Phase structure of impact-modified polypropylene blends. Polymer, 1984, 25(2), 279–286.
Da Silva, A. L. N.; Tavares, M. I. B.; Politano, D. P.; Coutinho, F. M. B.; Rocha, M. C. G.Polymer blends based on polyolefin elastomer and polypropylene. J. Appl. Polym. Sci., 1997, 66(10), 2005–2014.
Yang, J. H.; Zhang, Y.; Zhang, Y. X.Brittle-ductile transition of PP/POE blends in both impact and high speed tensile tests. Polymer, 2003, 44(17), 5047–5052.
Thomann, Y.; Suhm, J.; Thomann, R.; Bar, G.; Maier, R. D.; Mülhaupt, R.Investigation of morphologies of one- and two-phase blends of isotactic poly(propene) with random poly(ethene-co-1-butene). Macromolecules, 1998, 31(16), 5441–5449.
Deng, K. Q.; Felorzabihi, N.; Winnik, M. A.; Jiang, Z. H.; Yin, Z. H.; Yaneff, P. V.; Ryntz, R. A.Investigation of morphology and miscibility of isotactic polypropylene, ethylene-butene copolymer and chlorinated polyolefin blends via LSCFM, SEM, WAXD, and DMA. Polym. Adv. Technol., 2009, 20(3), 235–245.
Thomann, Y.; Suhm, J.; Thomann, R.; Maier, R. D.; Mülhaupt, R.; Bär, G.Morphologies and miscibilities of polypropene with random poly(ethene-co-1-butene). Macromol. Symp., 2000, 149(1), 125–130.
Wahit, M. U.; Hassan, A.; Mohd Ishak, Z. A.; Czigany, T.Ethylene-octene copolymer (POE) toughened polyamide 6/polypropylene nanocomposites: effect of POE maleation. Express Polym. Lett., 2009, 3(5), 309–319.
Yang, F.; Wang, X. Y.; Ma, Z.; Wang, B.; Pan, L.; Li, Y. S.Copolymerization of propylene with higher α-olefins by a pyridylamidohafnium catalyst: an effective approach to polypropylene-based elastomer. Polymers, 2020, 12(1), 89.
Tashiro, K.; Hu, J.; Wang, H.; Hanesaka, M.; Saiani, A.Refinement of the crystal structures of forms I and II of isotactic polybutene-1 and a proposal of phase transition mechanism between them. Macromolecules, 2016, 49(4), 1392–1404.
Jones, A. T.Cocrystallization in copolymers of α-olefins II—butene-1 copolymers and polybutene type II/I crystal phase transition. Polymer, 1966, 7(1), 23–59.
Liu, L.; Lou, Y. H.; Qv, C.; Ma, Z.; Li, Y. S.Crystallization and phase transition of 1-butene copolymers with distinct cyclic co-units. Chin. J. Chem., 2022, 40(12), 1429–1436.
Qv, C. J.; Li, W.; Zhao, R. J.; Ma, Z.Memory effect of crystallization in 1-butene/α-olefin copolymers. Chinese J. Polym. Sci., 2022, 40(6), 576–583.
Liu, C.; Wang, F.; Kang, Y. Z.; Mao, X. H.; Pan, L.; Ma, Z.; Li, Y. S.Preparation of polybutene-based thermoplastic elastomers through the copolymerization of 1-butene with higher α-olefins. Polym. Chem., 2024, 15(13), 1331–1338.
Cai, Z. G.; Shigemasa, M.; Nakayama, Y.; Shiono, T.Catalytic synthesis of monodisperse polypropylene using a living polymerization system with ansa-fluorenylamidodimethyltitanium-based catalyst. Macro-molecules, 2006, 39(19), 6321–6323.
Huang, D.; Ding, Y. L.; Jiang, H.; Sun, S. T.; Ma, Z.; Zhang, K. Y.; Pan, L.; Li, Y. S.Functionalized elastomeric ionomers used as effective toughening agents for poly(lactic acid): enhancement in interfacial adhesion and mechanical performance. ACS Sustain. Chem. Eng., 2020, 8(1), 573–585.
Ding, Y. L.; Chen, X. J.; Huang, D.; Fan, B. M.; Pan, L.; Zhang, K. Y.; Li, Y. S.Post-chemical grafting poly(methyl methacrylate) to commercially renewable elastomer as effective modifiers for polylactide blends. Int. J. Biol. Macromol., 2021, 181, 718–733.
Mehrabi Mazidi, M.; Edalat, A.; Berahman, R.; Hosseini, F. S.Highly-toughened polylactide-(PLA-) based ternary blends with significantly enhanced glass transition and melt strength: tailoring the interfacial interactions, phase morphology, and performance. Macromolecules, 2018, 51(11), 4298–4314.
van der Wal, A.; Verheul, A. J. J.; Gaymans, R. J.Polypropylene-rubber blends: 4. The effect of the rubber particle size on the fracture behaviour at low and high test speed. Polymer, 1999, 40(22), 6057–6065.
Wang, Y. S.; Wei, Z. Y.; Leng, X. F.; Shen, K. H.; Li, Y.Highly toughened polylactide with epoxidized polybutadiene by in situ reactive compatibilization. Polymer, 2016, 92, 74–83.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构