浏览全部资源
扫码关注微信
北京石油化工学院新材料与化工学院,特种弹性体复合材料北京市重点实验室,北京 102617
*戴玉华,E-mail: daiyuhua@bipt.edu.cn
纸质出版日期:2024-10-20,
网络出版日期:2024-07-15,
收稿日期:2024-05-15,
录用日期:2024-06-21
移动端阅览
刘玥, 杜晋君, 高大海, 方兵, 戴玉华. 染料敏化太阳能电池及其凝胶聚合物电解质的研究进展. 高分子通报, 2024, 37(10), 1354–1370
Liu, Y.; Du, J. J.; Gao, D. H.; Fang, B.; Dai, Y. H. Research progress of dye-sensitized solar cells and their gel polymer electrolytes. Polym. Bull. (in Chinese), 2024, 37(10), 1354–1370
刘玥, 杜晋君, 高大海, 方兵, 戴玉华. 染料敏化太阳能电池及其凝胶聚合物电解质的研究进展. 高分子通报, 2024, 37(10), 1354–1370 DOI: 10.14028/j.cnki.1003-3726.2024.24.151.
Liu, Y.; Du, J. J.; Gao, D. H.; Fang, B.; Dai, Y. H. Research progress of dye-sensitized solar cells and their gel polymer electrolytes. Polym. Bull. (in Chinese), 2024, 37(10), 1354–1370 DOI: 10.14028/j.cnki.1003-3726.2024.24.151.
随着能源消耗和环境污染的日益加剧,开发绿色、高效、环境友好的光电转换材料迫在眉睫。染料敏化太阳能电池(dye-sensitized solar cells,DSSC)作为第三代新型光伏电池,具有成本较低、制造简单和光电转换效率较高等特点,使其在可穿戴设备、移动电池和光伏建筑等领域获得应用。DSSC中的电解质对其光伏性能起着重要的决定作用,但由于传统液态电解质含有挥发性有机溶剂,导致器件会产生密封和泄漏的问题,影响电池的安全性和长期稳定性,限制了其应用范围。因此开发兼具稳定性和较高离子电导率的凝胶聚合物电解质(gel polymer electrolytes,GPE)是一个有效策略。本文综述了DSSC的结构与发展现状,主要介绍了几种聚合物基凝胶电解质的研究进展及其对DSSC性能的影响;并结合影响GPE离子电导率的影响因素,简述了离子液体在电解质改性研究中的作用;同时,提出了基于GPE的DSSC性能改进策略。
Given the escalating energy consumption and environmental pollution
there is an urgent need to develop photoelectric conversion materials that are green
efficient
and eco-friendly. Dye-sensitized solar cells (DSSC)
representing the third generation of novel photovoltaic cells
are characterized by low cost
simple manufacturing and superior photovoltaic conversion efficiency
which has enabled their application in diverse areas
including wearable devices
mobile batteries and photovoltaic buildings. The electrolyte plays an important decisive role in the photovoltaic performance of DSSCs. However
traditional liquid electrolytes
which contain volatile organic solvents
can lead to sealing and leakage issues in devices. These problems not only compromise the safety of the batteries but also limit their long-term stability
thereby restricting its application. Therefore
the development of gel polymer electrolytes (GPE) that combine stability and high ionic conductivity emerges as an effective strategy. This work provides a review of the structure and current development of DSSCs
with a particular emphasis on the research progress on various polymer-based gel electrolytes and their impact on DSSC performance. Additionally
it briefly outlines the role of ionic liquids in electrolyte modification research
taking into account the factors that influence the ionic conductivity of GPE. Concurrently
a strategy for improving the performance of GPE-based DSSCs is proposed.
染料敏化太阳能电池凝胶聚合物电解质离子液体
Dye-sensitized solar cellsGel polymer electrolytesIonic liquids
Zhang, D.; Stojanovic, M.; Ren, Y. M.; Cao, Y. M.; Eickemeyer, F. T.; Socie, E.; Vlachopoulos, N.; Moser, J. E.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M.A molecular photosensitizer achieves a Voc of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper(II/I)-based electrolyte. Nat. Commun., 2021, 12(1), 1777.
Meda, U. S.; Rajyaguru, Y. V.; Pandey, A.Generation of green hydrogen using self-sustained regenerative fuel cells: opportunities and challenges. Int. J. Hydrog. Energy, 2023, 48(73), 28289–28314.
2050年全球139个国家将实现100%可再生能源供电. 热力透平, 2017, 46(3), 198.
Yamamoto, K.; Mishima, R.; Uzu, H.; Adachi, D.High efficiency perovskite/heterojunction crystalline silicon tandem solar cells: towards industrial-sized cell and module. Jpn. J. Appl. Phys., 2023, 62, SK1021.
Liu, Q. S.; Jiang, Y. F.; Jin, K.; Qin, J. Q.; Xu, J. G.; Li, W. T.; Xiong, J.; Liu, J. F.; Xiao, Z.; Sun, K.; Yang, S. F.; Zhang, X. T.; Ding, L. M.18% Efficiency organic solar cells. Sci. Bull., 2020, 65(4), 272–275.
林新璐, 李辉. 提高钙钛矿太阳能电池稳定性的方法研究进展. 高分子通报, 2018, (8), 37–42.
Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J. I.; Hanaya, M.Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun., 2015, 51(88), 15894–15897.
Wu, J. H.; Lan, Z.; Wang, D. B.; Hao, S. C.; Lin, J. M.; Huang, Y. F.; Yin, S.; Sato, T.Gel polymer electrolyte based on poly(acrylonitrile-co-styrene) and a novel organic iodide salt for quasi-solid state dye-sensitized solar cell. Electrochim. Acta, 2006, 51(20), 4243–4249.
Venkatraman, M. R.; Rajesh, G.; Rajkumar, S.; Ananthan, M. R.; Balaji, G.Semi-transparent dye-sensitized solar cells (DSSC) for energy-efficient windows with microwave-prepared TiO2 nanoparticles as photoanodes. Mater. Lett., 2024, 360, 135953.
Lee, T. D.; Ebong, A. U.A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev., 2017, 70, 1286–1297.
Wang, W.; Winkler, M. T.; Gunawan, O.; Gokmen, T.; Todorov, T. K.; Zhu, Y.; Mitzi, D. B.Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater., 2014, 4(7), 1301465.
Du, Z.; Artemyev, M.; Wang, J.; Tang, J.Performance improvement strategies for quantum dot-sensitized solar cells: a review. J. Mater. Chem. A, 2019, 7(6), 2464–2489.
Zhou, J.; Tan, L.; Liu, Y.; Li, H.; Liu, X.; Li, M.; Wang, S.; Zhang, Y.; Jiang, C.; Hua, R.; Tress, W.; Meloni, S.; Yi, C.Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule, 2024.
O'Regan, B.; Grätzel, M.A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346), 737–740.
Rahman, S.; Haleem, A.; Siddiq, M.; Hussain, M. K.; Qamar, S.; Hameed, S.; Waris, M.Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects. RSC Adv., 2023, 13(28), 19508–19529.
Iftikhar, H.; Sonai, G. G.; Hashmi, S. G.; Nogueira, A. F.; Lund, P. D.Progress on electrolytes development in dye-sensitized solar cells. Materials, 2019, 12(12), 1998.
梁桂杰, 徐卫林, 沈小林, 杨红军. 高分子量PEO基凝胶电解质在DSSC中导电性能的研究. 太阳能学报, 2008, (8), 933–938.
孙旭辉, 包塔娜, 张凌云, 张国华, 王维广. 染料敏化太阳能电池的研究进展. 化工进展, 2012, 31(1), 47–52.
Li, H.; He, Y.; Wang, X.; Liu, D.; Liu, Z.Bilayer films using broadband nanoparticles and mesoporous TiO2 for high efficient dye sensitized solar cells. J. Alloys Compd., 2019, 773, 743–751.
Nazeeruddin, M. K.; Baranoff, E.; Grätzel, M.Dye-sensitized solar cells: a brief overview. Sol. Energy, 2011, 85(6), 1172–1178.
Mohammadian-Sarcheshmeh, H.; Arazi, R.; Mazloum-Ardakani, M.Application of bifunctional photoanode materials in DSSCs: a review. Renew. Sustain. Energy Rev., 2020, 134, 110249.
Thasirisap, E.; Vittayakorn, N.; Seeharaj, P.Surface modification of TiO2 particles with the sono-assisted exfoliation method. Ultrason. Sonochem., 2017, 39, 733–740.
Yen, M. Y.; Yen, C. Y.; Liao, S. H.; Hsiao, M. C.; Weng, C. C.; Lin, Y. F.; Ma, C. C. M.; Tsai, M. C.; Su, A.; Ho, K. K.; Liu, P. L.A novel carbon-based nanocomposite plate as a counter electrode for dye-sensitized solar cells. Compos. Sci. Technol., 2009, 69(13), 2193–2197.
Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P.Nanowire dye-sensitized solar cells. Nat. Mater., 2005, 4(6), 455–459.
Liu, B.; Aydil, E. S.Growth of oriented single-crystalline rutile tio2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc., 2009, 131(11), 3985–3990.
Liu, H.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H.Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct., 2010, 48(5), 458–484.
Jiang, W.; Liu, H.; Yin, L.; Ding, Y.Fabrication of well-arrayed plasmonic mesoporous TiO2/Ag films for dye-sensitized solar cells by multiple-step nanoimprint lithography. J. Mater. Chem. A, 2013, 1(21), 6433–6440.
Aseena, S.; Abraham, N.; Babu, V. S.Synthesis of CNT based nanocomposites and their application as photoanode material for improved efficiency in DSSC. Ceram. Int., 2020, 46(18, Part A), 28355–28362.
Kandasamy, M.; Murugesan, S.; Selvaraj, M.; Alam, M. M.Aminosilicate modified zinc oxide nanorod-GO nanocomposite for DSSC photoanodes. Ceram. Int., 2022, 48(5), 6037–6045.
Shahzad, N.; Lutfullah ; Perveen, T.; Pugliese, D.; Haq, S.; Fatima, N.; Salman, S. M.; Tagliaferro, A.; Shahzad, M. I.Counter electrode materials based on carbon nanotubes for dye-sensitized solar cells. Renew. Sustain. Energy Rev., 2022, 159, 112196.
Chinnarani, M.; Suresh, S.; Prabu, K. M.; Kandasamy, M.; Pugazhenthiran, N.Facile synthesis of reduced graphene oxide and graphitic carbon nitride modified titanium dioxide nanospheres for photoanode of dye-sensitized solar cell. Inorg. Chim. Acta, 2024, 560, 121842.
Ayaz, M.; Hijji, M.; Alatawi, A. S.; Namazi, M. A.; Ershath, M. I. M.Improving charge transfer properties and solar cell performance by In-doped TiO2 as an efficient photoanode for dye-sensitized solar cells (DSSCs). J. Phys. Chem. Solids, 2024, 188, 111913.
Sharma, G. D.; Daphnomili, D.; Angaridis, P. A.; Biswas, S.; Coutsolelos, A. G.Effect of thiourea incorporation in the electrolyte on the photovoltaic performance of the DSSC sensitized with pyridyl functionalized porphyrin. Electrochim. Acta, 2013, 102, 459–465.
Shalini, S.; Balasundaraprabhu, R.; Kumar, T. S.; Prabavathy, N.; Senthilarasu, S.; Prasanna, S.Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): a review. Int. J. Energy Res., 2016, 40(10), 1303–1320.
Shen, Z.; Eickemeyer, F. T.; Gao, J.; Pfeifer, L.; Bradford, D.; Freitag, M.; Zakeeruddin, S. M.; Grätzel, M.Molecular engineering of low-cost, efficient, and stable photosensitizers for dye-sensitized solar cells. Chem., 2023, 9(12), 3637–3647.
Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H.Dye-sensitized solar cells. Chem. Rev., 2010, 110(11), 6595–6663.
Jeon, S. S.; Kim, C.; Ko, J.; Im, S. S.Pt nanoparticles supported on polypyrrole nanospheres as a catalytic counter electrode for dye-sensitized solar cells. J. Phys. Chem. C, 2011, 115(44), 22035–22039.
Li, K.; He, Y.; Yue, G.; Gao, Y.; Dong, C.; Tan, F.Construction of magnetic Fe2P2O7/Ni2P@MXene composite counter electrode for efficient dye-sensitized solar cells. Vacuum, 2024, 222, 112982.
Al-Zoubi, O. H.; Musad Saleh, E. A.; Abdullah Saieed, A. N.; Olegovich, B. D.; Alwaily, E. R.; Alawadi, A.; Talal, M.; Mustafa, Y. F.Platinum-free counter electrode based on ZnCo2O4@NiO core-shell nanostructures in dye-sensitized solar cells. Mater. Sci. Semicond. Process., 2024, 174, 108234.
Ayaz, M.; Hijji, M.; Alatawi, A. S.; Namazi, M. A.; Mohamed Ershath, M. I.Enhancing photovoltaic performance in dye-sensitized solar cells using nanostructured NiS/MoS2 composite counter electrodes. Mater. Sci. Semicond. Process., 2024, 173, 108172.
Teng, K. L.; Lin, X. Y.; Liu, S. H.; Yu, Y. H.; Tsai, C. H.; Yang, B. X.; Chien, S. Y.Nitrogen, sulfur coordinated metal complex and reduced graphene oxide hybrid materials as counter electrodes for application in dye-sensitized solar cells. Org. Electron., 2024, 125, 106977.
Soundharaya, J.; Raksha, A.; Rajni, K. S.; Senthilkumar, N.; Eswaramoorthy, N.; Raguram, T.Construction of Cu-doped α-MoO3 nanostructures and their application as counter electrode in dye-sensitized solar cells. Mater. Lett., 2024, 359, 135773.
Abbood, M. A.Enhancing photovoltaic performance in dye-sensitized solar cells: a novel MWCNT@SnSe counter electrode approach. Opt. Mater., 2024, 149, 115114.
Mirzaei, M.; Gholivand, M. B.Ni and P co-doped WS2 nanosheets decorated on MWCNTs as an efficient counter electrode for dye-sensitized solar cells. J. Alloys Compd., 2024, 980, 173535.
Mithari, P. A.; Mendhe, A. C.; Patrikar, S. R.; Lokhande, C. D.; Sankapal, B. R.Bi2S3 nanoparticles anchored MWCNTs towards core-shell architecture: counter electrode for dye-sensitized solar cell. Appl. Surf. Sci. Adv., 2023, 18, 100485.
Gayathri, V.; Muthukumar, A.; Mohan, C. R.GQDs assisted Ba6Co25S27/MWCNT composite as a promising candidate for supercapacitor and a perspective Pt-free counter electrode in DSSC for enhancing the short circuit current. Colloids Surf. A Physicochem. Eng. Aspects, 2024, 683, 132973.
Cole, J. M.; Pepe, G.; Al Bahri, O. K.; Cooper, C. B.Cosensitization in dye-sensitized solar cells. Chem. Rev., 2019, 119(12), 7279–7327.
Venkatesan, S.; Darlim, E. S.; Liu, I. P.; Lee, Y. L.Performance enhancement effects of dispersed graphene oxide sponge nanofillers on the liquid electrolytes of dye-sensitized solar cells. Carbon, 2018, 132, 71–77.
Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M.Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc., 2005, 127(48), 16835–16847.
Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Humphry-Baker, R.; Comte, P.; Aranyos, V.; Hagfeldt, A.; Nazeeruddin, M. K.; Grätzel, M.Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells. Adv. Mater., 2004, 16(20), 1806–1811.
Ileperuma, O. A.Gel polymer electrolytes for dye sensitised solar cells: a review. Mater. Technol., 2013, 28(1-2), 65–70.
Kuang, D.; Klein, C.; Zhang, Z.; Ito, S.; Moser, J. E.; Zakeeruddin, S. M.; Grätzel, M.Stable, high-efficiency ionic-liquid-based mesoscopic dye-sensitized solar cells. Small, 2007, 3(12), 2094–2102.
Fei, Z.; Kuang, D.; Zhao, D.; Klein, C.; Ang, W. H.; Zakeeruddin, S. M.; Grätzel, M.; Dyson, P. J.A supercooled imidazolium iodide ionic liquid as a low-viscosity electrolyte for dye-sensitized solar cells. Inorg. Chem., 2006, 45(26), 10407–10409.
Kuang, D.; Wang, P.; Ito, S.; Zakeeruddin, S. M.; Grätzel, M.Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte. J. Am. Chem. Soc., 2006, 128(24), 7732–7733.
Tedla, A.; Tai, Y.Influence of binary solvent system on the stability and efficiency of liquid dye sensitized solar cells. J. Photoch. Photobio. A., 2018, 358, 70–75.
Abu Talip, R. A.; Yahya, W. Z. N.; Mohamed, N. M.; Zaki, Y. H.; Ramly, K.; Zaine, S. N. A.; Bustam, M. A.; Singh, P. K.A performance enhancement of dye-sensitized solar cells using pyrazolium-based ionic liquids electrolytes vs imidazolium-based ionic liquids electrolytes. J. Mol. Liq., 2024, 398, 124214.
Muin, A. A. M.; Zakaria, S. N.; Zaini, N. A. S.Optimization of thin polystyrene waste embedded multiwall carbon nanotubes (MWCNT) film for solid electrolyte of flexible dye-sensitized solar cell (DSSC). Mater. Today: Proc., 2022, 66, 3970–3976.
Mehmood, U.; Al-Ahmed, A.; Al-Sulaiman, F. A.; Malik, M. I.; Shehzad, F.; Khan, A. U. H.Effect of temperature on the photovoltaic performance and stability of solid-state dye-sensitized solar cells: a review. Renew. Sustain. Energy Rev., 2017, 79, 946–959.
Wang, G.; Liu, L.; Tan, X.; Zheng, W.The moderating effect of dispositional mindfulness on the relationship between materialism and mental health. Pers. Individ. Differ., 2017, 107, 131–136.
Wang, H.; Li, J.; Gong, F.; Zhou, G.; Wang, Z. S.Ionic conductor with high conductivity as single-component electrolyte for efficient solid-state dye-sensitized solar cells. J. Am. Chem. Soc., 2013, 135(34), 12627–12633.
Li, X.; Zhao, Z.; Zhou, J.; Wang, C.; Wu, Y.; Tan, S.An all-solid-state lamellar-nanostructured polymer electrolyte in-situ-prepared from smectic liquid crystal for thermally stable dye-sensitized solar cells. Chem. Eng. Sci., 2020, 221, 115710.
Han, H. W.; Liu, W.; Zhang, J.; Zhao, X. Z.A hybrid poly(ethylene oxide)/poly(vinylidene fluoride)/TiO2 nanoparticle solid-state redox electrolyte for dye-sensitized nanocrystalline solar cells. Adv. Funct. Mater., 2005, 15(12), 1940–1944.
Liu, X.; Zhang, W.; Uchida, S.; Cai, L.; Liu, B.; Ramakrishna, S.An efficient organic-dye-sensitized solar cell with in situ polymerized poly(3, 4-ethylenedioxythiophene) as a hole-transporting material. Adv. Mater., 2010, 22(20), E150–E155.
Suryanarayanan, V.; Lee, K. M.; Ho, W. H.; Chen, H. C.; Ho, K. C.A comparative study of gel polymer electrolytes based on PVDF-HFP and liquid electrolytes, containing imidazolinium ionic liquids of different carbon chain lengths in DSSCs. Sol. Energy Mater Sol. Cells, 2007, 91(15), 1467–1471.
Su’ait, M. S.; Rahman, M. Y. A.; Ahmad, A.Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Sol. Energy, 2015, 115, 452–470.
Manafi, P.; Nazockdast, H.; Karimi, M.; Sadighi, M.; Magagnin, L.A study on the microstructural development of gel polymer electrolytes and different imidazolium-based ionic liquids for dye-sensitized solar cells. J. Power Sources, 2021, 481, 228622.
Raut, P.; Kishnani, V.; Mondal, K.; Gupta, A.; Jana, S. C.A review on gel polymer electrolytes for dye-sensitized solar cells. Micromachines, 2022, 13(5), 680.
Wu, J. H.; Hao, S. C.; Lan, Z.; Lin, J. M.; Huang, M. L.; Huang, Y. F.; Fang, L. Q.; Yin, S.; Sato, T.A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells. Adv. Funct. Mater., 2007, 17(15), 2645–2652.
Lan, Z.; Wu, J.; Lin, J.; Huang, M.Application of thermosetting organic solvent free polymer gel electrolyte in quasi-solid-state dye-sensitized solar cell. J. Appl. Polym. Sci., 2010, 116(3), 1329–1333.
Pullanjiyot, N.; Manakkulamparambil Vidyadharan, D.; Swaminathan, S.Synthesis and electrochemical characterization of physically cross-linked gel electrolyte for QSDSSC application. Mater. Des., 2016, 101, 270–276.
Wang, X.; Zhang, Y.; Xu, Q.; Xu, J.; Wu, B.; Gong, M.; Chu, J.; Xiong, S.A low-cost quasi-solid DSSC assembled with PVDF-based gel electrolyte plasticized by PC–EC & electrodeposited Pt counter electrode. J. Photochem. Photobiol., A, 2015, 311, 112–117.
Dissanayake, M. A. K. L.; Hettiarachchi, M. S. H.; Senadeera, G. K. R.; Kumari, J. M. K. W.; Umair, K.; Bandara, T. M. W. J.; Albinsson, I.; Furlani, M.; Mellander, B. E.; Chaure, N. B.; Olusola, O. I.High-efficiency dye-sensitized solar cells fabricated with electrospun PVdF-HFP polymer nanofibre-based gel electrolytes. Bull. Mater. Sci., 2023, 46(2), 80.
Bandara, T. M. W. J.; Weerasinghe, A. M. J. S.; Dissanayake, M. A. K. L.; Senadeera, G. K. R.; Furlani, M.; Albinsson, I.; Mellander, B. E.Characterization of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) nanofiber membrane based quasi solid electrolytes and their application in a dye sensitized solar cell. Thermochim. Acta, 2018, 266, 276–283.
Ri, J. H.; Jin, J.; Xu, J.; Peng, T.; Ryu, K. I.Preparation of iodine-free ionic liquid gel electrolyte using polyethylene oxide (PEO)-polyethylene glycol (PEG) and its application in Ti-foil-based dye-sensitized solar cells. Thermochim. Acta, 2016, 201, 251–259.
Aram, E.; Ehsani, M.; Khonakdar, H. A.Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte. Thermochim. Acta, 2015, 615, 61–67.
Hsu, Y. C.; Tseng, L. C.; Lee, R. H.Graphene oxide sheet-polyaniline nanohybrids for enhanced photovoltaic performance of dye-sensitized solar cells. J. Polym. Sci., Part B: Polym. Phys., 2014, 52(4), 321–332.
Chan, X. H.; Khanmirzaei, M. H.; Omar, F. S.; Kasi, R. T.; Subramaniam, R.The effect of incorporation of multi-walled carbon nanotube into poly(ethylene oxide) gel electrolyte on the photovoltaic performance of dye-sensitized solar cell. Polym. Plast. Technol. Mater., 2019, 58(1), 97–104.
Seo, S. J.; Cha, H. J.; Kang, Y. S.; Kang, M.-S.Printable ternary component polymer-gel electrolytes for long-term stable dye-sensitized solar cells. Electrochim. Acta, 2014, 145, 217–223.
Chen, C. L.; Chang, T. W.; Su, S. C.; Teng, H.; Lee, Y.-L.High performance solid-state dye-sensitized solar cells based on poly(acrylonitrile-co-vinyl acetate)/TiO2 nanoparticles redox electrolytes. J. Power Sources, 2014, 247, 406–411.
Kim, K. M.; Masud ; Ji, J.-M.; Kim, H. K.PAN-based triblock copolymers tailor-made by reversible addition-fragmentation chain transfer polymerization for high-performance quasi-solid state dye-sensitized solar cells. ACS Appl. Energy Mater., 2021, 4(2), 1302–1312.
Varishetty, M. M.; Kenji, M.; Tarannum, N.; Damaraju, S. R.; Jonnalagadda, M.A novel poly(acrylonitrile)/poly(ethylene glycol)-based polymer gel electrolyte for high efficiency dye sensitized solar cells. Energy Adv., 2023, 2(10), 1702–1712.
Mohan, K.; Bora, A.; Nath, B. C.; Gogoi, P.; Saikia, B. J.; Dolui, S. K.A highly stable and efficient quasi solid state dye sensitized solar cell based on polymethyl methacrylate (PMMA)/polyaniline nanotube (PANI-NT) gel electrolyte. Electrochim. Acta, 2016, 222, 1072–1078.
Tsai, C.-H.; Chen, Y.-L.; Hsu, H.-L.; Ma, Y.-R.; Mou, S.Enhancing the efficiency of quasi-solid-state dye-sensitized solar cells by adding bis(trifluoromethane)sulfonimide lithium salt and camphorsulfonic acid to gel-based electrolytes. Mater. Res. Bull., 2018, 107, 87–93.
Chuang, P. Y.; Chang, L. Y.; Chuang, C. N.; Chen, S.-H.; Lin, J. J.; Ho, K. C.; Hsieh, K. H.A novel gel electrolyte based on polyurethane for highly efficient in dye-sensitized solar cells. J. Polym. Res., 2016, 23(10), 214.
Su’ait, M. S.; Jumaah, F. N.; Faizzi, H. M.; Mamat, S.; Ludin, N. A.; Farhan, W. A.; Haron, A.; Atifah, N.; Latif, M. N.; Badri, K. H.; Ahmad, A.Palm-based polyurethane-ionic liquid gel polymer electrolyte for quasi-solid state dye sensitized solar cell. Ind. Crops Prod., 2018, 113, 406–413.
梁慧蕾. 聚醚型聚氨酯离子液体固态电解质的研究. 北京: 北京化工大学, 2018.
李坤. 基于羟基硅油改性的聚氨酯凝胶电解质的研究. 北京: 北京化工大学, 2017.
赵彤. 可原位固化的聚氨酯固态电解质的研究. 北京: 北京石油化工学院, 2019.
赵欣. 可原位固化的离子型纤维素凝胶电解质的研究. 北京: 北京石油化工学院, 2023.
Sun, S.; Song, J.; Feng, R.; Shan, Z.Ionic liquid gel electrolytes for quasi-solid-state dye-sensitized solar cells. Electrochim. Acta, 2012, 69, 51–55.
Syairah, A.; Khanmirzaei, M. H.; Saidi, N. M.; Farhana, N. K.; Ramesh, S.; Ramesh, K.; Ramesh, S.Effect of different imidazolium-based ionic liquids on gel polymer electrolytes for dye-sensitized solar cells. Ionics, 2019, 25(5), 2427–2435.
Farhana, N. K.; Khanmirzaei, M. H.; Omar, F. S.; Ramesh, S.; Ramesh, K.Ionic conductivity improvement in poly(propylene) carbonate-based gel polymer electrolytes using 1-butyl-3-methylimidazolium iodide (BmimI) ionic liquid for dye-sensitized solar cell application. Ionics, 2017, 23(6), 1601–1605.
Li, Q.; Tang, Q.; Du, N.; Qin, Y.; Xiao, J.; He, B.; Chen, H.; Chu, L.Employment of ionic liquid-imbibed polymer gel electrolyte for efficient quasi-solid-state dye-sensitized solar cells. J. Power Sources, 2014, 248, 816–821.
Tan, C. Y.; Saidi, N. M.; Farhana, N. K.; Omar, F. S.; Algaradah, M. M.; Bashir, S.; Ramesh, S.; Ramesh, K.Improved ionic conductivity and efficiency of dye-sensitized solar cells with the incorporation of 1-methyl-3-propylimidazolium iodide. Ionics, 2020, 26(6), 3173–3183.
Saidi, N. M.; Goh, Z. L.; Arif, H. M.; Farhana, N. K.; Ramesh, S.; Ramesh, K.Consolidation of ion promoters into quasi solid-state (QSS) polymer electrolytes for dye-sensitized solar cells (DSSCs). Solid State Ion., 2021, 363, 115592.
Wang, G.; Zhuo, S.; Lin, Y.An ionic liquid-based polymer with π-stacked structure as all-solid-state electrolyte for efficient dye-sensitized solar cells. J. Appl. Polym. Sci., 2013, 127(4), 2574–2580.
Ma, P.; Fang, Y.; Li, A.; Wen, B.; Cheng, H.; Zhou, X.; Shi, Y.; Yang, H. Y.; Lin, Y.Highly efficient and stable ionic liquid-based gel electrolytes. Nanoscale, 2021, 13(15), 7140–7151.
Bharwal, A. K.; Manceriu, L.; Iojoiu, C.; Dewalque, J.; Toupance, T.; Hirsch, L.; Henrist, C.; Alloin, F.Ionic-liquid-like polysiloxane electrolytes for highly stable solid-state dye-sensitized solar cells. ACS Appl. Energy Mater., 2018, 1(8), 4106–4114.
任勇源, 郭江娜, 孙哲, 胡寅, 严锋. 多孔聚离子液体的合成与应用. 高分子通报, 2018, (6), 21–31.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构